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Abstract

We describe a support vector machine (SVM) classifier design algorithm called L1–SVMD that
produces approximate solutions with guaranteed accuracy and runs in polynomial time. This al-
gorithm computes an approximate solution to the L1–SVM quadratic programming (QP) problem
using a two stage approach where the first stage uses Simon’s decomposition algorithm [8, 24, 16]
to compute an approximate solution to a dual QP, and the second stage constructs an approximate
primal solution from the approximate dual solution. For the second stage we establish a general
method for constructing primal solutions with accuracy εp from dual solutions with accuracy εd
by solving a set of converse dual equations, and then we design an efficient algorithm that ap-
proximately solves these equations to yield approximate primal solutions with accuracy εp ∝

√
εd.

For the L1–SVMD algorithm we develop a run time bound that depends on the regularization
parameter λ, the accuracy εp, the number of training samples n, and the kernel.
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1 Introduction

We begin with a formal definition of the classification problem. Let X be a pattern space and
Y := {−1, 1} be the label space. A classifier uses a decision function h : X → R to assign the
label sign h(x) to every x ∈ X (where sign 0 := 1). Let P be an (unknown) probability measure
on X × Y . The performance of a decision function h is measured by its risk (average classification
error)

RP (h) := P ({(x, y) : sign h(x) 6= y}).

The smallest achievable risk is the Bayes risk

R∗
P := inf{RP (h) | h : X → R measurable}.

Let T = ((x1, y1), (x2, y2), ..., (xn, yn)) ∈ (X × Y )n be a collection of n i.i.d. data samples drawn
according to P . In the classification problem we seek a procedure that accepts T and produces
a decision function hT whose risk RP (hT ) is close to the Bayes risk. More generally we seek
a computationally efficient procedure that can accomplish this task for a large fraction of the
training sets T drawn from distributions P that belong to a large class of distributions.

SVM classifiers map from the pattern space X to a Hilbert space H and implement a linear
classifier in H. In particular, for a map Φ : X → H, SVM decision functions take the form

hψ,b(x) := ψ · Φ(x) + b

where (ψ, b) ∈ H × R and · is the Hilbert space inner product. Since a large (possibly infinite)
dimensional Hilbert space may be required for good performance a kernel function k : X ×X → R
is used to compute the Hilbert space inner product, i.e. k(x1, x2) = Φ(x1) · Φ(x2),∀x1, x2 ∈ X.
In practice, rather than choose the map Φ, we often choose the kernel function k. Once a kernel
has been chosen the classifier parameters (ψT , bT ) are determined by solving a convex quadratic
programming (QP) problem parameterized by T . Several forms have been proposed for this QP
problem, but few currently possess both favorable performance bounds (relative to the Bayes risk)
and practical algorithms that are proven to run in polynomial–time. One that does is based on the
QP problem

minψ,ξ,b λ‖ψ‖2 +
∑n

i=1 uiξi
PSVM : 1− yi(ψ · Φ(xi) + b)− ξi ≤ 0, i = 1, ..., n

−ξi ≤ 0, i = 1, ..., n
(1)

where λ > 0, ui > 0 and
∑

i ui = 1. In particular the so–called L1–SVM [26] sets ui = 1/n, i =
1, ..., n, giving rise to the (PL1−SVM ) variant that is used to design parameters for the classification
problem above. In contrast the DLD–SVM [25] sets

ui =
{
β/n1, yi = 1
(1− β)/n−1, yi = −1

where 0 ≤ β ≤ 1, giving rise to the (PDLD−SVM ) variant that is used to solve a density level
detection problem for anomaly detection. Although our primary interest is in the (PL1−SVM )
variant, much of our intermediate analysis is carried out for the more general (PSVM ) problem.

Numerous algorithms have been proposed for (PSVM ), and while several are considered practical,
few are known to possess polynomial run–time bounds. This problem presents some interesting
computational challenges in that standard algorithms for convex QPs are not practical because
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(PSVM ) may be very large (even infinite dimensional). For example the ellipsoid–based polynomial–
time algorithm described by Bern and Eppstein is not practical because it requires an explicit
representation of the data in H [3]. The so–called Wolfe Dual of (PSVM ) is given by

maxα−1
2〈Qα,α〉+ α · 1

D́SVM : α · y = 0
0 ≤ α ≤ u

(2)

where

Qi,j = yiyjΦ(xi) · Φ(xj)/2λ, 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Since this problem is smaller (and always finite dimensional) it seems natural to consider an ap-
proach that first computes a solution αT to (D́SVM ) and then uses αT to compute a solution
(ψT , bT , ξT ) to (PSVM ). In particular this might be accomplished by using αT to form a Kuhn–
Tucker vector for (PSVM ), establishing a set of optimality conditions expressed in terms of this
Kuhn–Tucker vector using Theorem 28.1 in Rockafeller [22], and then formulating an optimization
problem whose solutions satisfy these conditions. For example, given αT , the optimization problem

ψT = 1
2λ

∑n
i=1 αT iyiΦ(xi)

(bT , ξT ) ∈ arg minb,ξ
∑n

i=1 ξi
1− yi(ψT · Φ(xi) + b)− ξi ≤ 0, i = 1, ..., n

−ξi ≤ 0, i = 1, ..., n

(3)

reduces the task of solving (PSVM ) to the task of solving an (n+1)–dimensional linear programming
(LP) problem. However, (D́SVM ) can still be quite large. Indeed, simply specifying a problem
instance requires order n2 memory which, for medium to large values of n, is impractical for most
modern computers. This issue has been addressed by employing algorithms that solve the Wolfe
Dual QP problem by solving a sequence of smaller problems where each of the smaller QP problems
is obtained by fixing a subset of the variables and optimizing with respect to the remaining variables.
Algorithmic strategies that solve a QP problem in this way are called decomposition algorithms and
a number have been developed for the Wolfe Dual QP problem [1, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16,
18, 19, 20, 21, 24, 27], but few have been proven to run in polynomial time. Balcázar et al. present
a randomized decomposition algorithm whose expected run time is O

(
(n+r(k2d2)) kd log n

)
where

n is the number of samples, d is the dimension of the input space, 1 ≤ k ≤ n is a data dependent
parameter and r(k2d2) is the run time required to exactly solve the Wolfe Dual QP over k2d2

samples [1]. This algorithm is attractive when k2d2 � n, but in practice the value of k is unknown
and it may be large when the Bayes risk is not close to zero. Hush and Scovel [9] define a class
of rate certifying algorithms that are guaranteed to produce an approximate solution to the Wolfe
Dual QP in polynomial time. The key to developing a successful rate certifying algorithm is in
the method used to determine the working sets, which are the subsets of variables to be optimized
at each iteration. Currently the fastest guaranteed rates are obtained with Simon’s working set
selection algorithm [24] which yields a rate certifying decomposition algorithm that produces an
εd–optimal solution to the Wolfe dual in O

(
nK
λεd

+ n2 ln λn
K

)
time where K = maxi k(xi, xi) [8, 16].

Existing computational guarantees hold only for approximate solutions to a dual QP problem
[8, 16]. We remedy this situation by establishing a framework for the accurate construction of
approximate primal solutions from approximate dual solutions, designing and analyzing a specific
construction method, ans designing and analyzing a computationally efficient algorithm for this
method. In particular Section 2 establishes a framework for constructing approximate solutions
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to (PSVM ) with accuracy εp from approximate solutions to (D́SVM ) with accuracy εd by solving a
set of converse dual equations. We show that exact solutions to these equations yield approximate
primal solutions with εp = 4εd, but we are unable to produce a computationally efficient algorithm
to exactly solve these equations. On the other hand we determine a computationally efficient
method for approximately solving these equations that yields approximate primal solutions with
εp ∝

√
εd. In Section 3 we combine this method with Simon’s rate certifying algorithm for the dual

[8, 24, 16] to form a learning algorithm for the L1–SVM variant of (PSVM ) that is polynomial in
n, 1/λ, and 1/εp.

Remark 1 Before we proceed let us clarify the scope of our run time analysis. The types of com-
putations required to design and implement SVMs include constant time operations (such as
addition, multiplication and comparison) and kernel evaluations whose computational require-
ments are almost never constant time and vary significantly from one kernel to the next. In this
paper we describe an algorithm that requires a polynomial number of constant time operations and
a polynomial number of kernel evaluations.

2 Constructing an Approximate Solution to the Primal

An efficient procedure exists for determining an exact primal solution from an exact dual solution
by solving the LP problem in (3) (e.g. such a procedure is described in the last part of the proof
of Theorem 3 in Section 3), but a suitable method for determining an approximate primal solution
from an approximate dual solution is currently unknown. The analysis in this section suggests that
the latter involves a serious trade–off between computation and accuracy. We briefly investigate
this issue and then analyze an efficient procedure that closely resembles current practice.

We start by defining approximate solution sets for maximization problems. The definition for
minimization problems is analogous.

Definition 1 Let (P ) be a maximization problem with domain Θ and criterion function G : Θ→ R̄.
Let G∗ := supθ∈ΘG(θ) be its optimal value. Then for any 0 ≤ ε <∞ we define

Oε(P ) := {θ ∈ Θ : G(θ) ≥ G∗ − ε}

to be the set of ε–maximizers of (P ).

To simplify notation we use the variable z to represent points mapped from X, i.e. z := Φ(x).
The criterion function for (PSVM ) is

GP (ψ, b, ξ) = λ‖ψ‖2 +
n∑
i=1

uiξi + δS1(ψ, b, ξ)

where δS is the indicator function of the set S,

δS(θ) :=
{

0, θ ∈ S
∞, θ /∈ S

and S1 = {(ψ, b, ξ) : 1 − yi(ψ · zi + b) − ξi ≤ 0 and ξi ≥ 0, i = 1, ..., n}. The Lagrangian [22] for
(PSVM ) is

L(ψ, ξ, b;α, µ) ={
λ‖ψ‖2 +

∑n
i=1 uiξi −

∑n
i=1 αi

(
yi(ψ · zi + b)− 1 + ξi

)
−
∑n

i=1 µiξi (α, µ) ∈ E
−∞ (α, µ) /∈ E

3
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where E = {(α, µ) : αi ≥ 0, µi ≥ 0, i = 1, ..., n}. The Lagrange dual criterion function is

GD(α, µ) := inf
ψ,ξ,b

L(ψ, ξ, b;α, µ) ={
−∞ αi + µi 6= ui for any i or (α, µ) /∈ E
infψ,b λ‖ψ‖2 −

∑n
i=1 αi

(
yi(ψ · zi + b)− 1

)
, αi + µi = ui ∀i and (α, µ) ∈ E.

Define the matrix Q

Qi,j = yiyjzi · zj/2λ, 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Since

inf
ψ,b

λ‖ψ‖2 −
n∑
i=1

αi
(
yi(ψ · zi + b)− 1

)
=

{
−∞, α · y 6= 0
infψ λ‖ψ‖2 −

∑n
i=1 αi

(
yiψ · zi − 1

)
, α · y = 0

and

inf
ψ
λ‖ψ‖2 −

n∑
i=1

αi
(
yiψ · zi − 1

)
= −1

2
〈Qα,α〉+ α · 1

we obtain that the Lagrangian dual criterion is

GD(α, µ) = −1
2
〈Qα,α〉+ α · 1− δS2(α)− δS3(α, µ) (4)

where S2 = {ά : 0 ≤ ά ≤ u and ά · y = 0} and S3 = {(ά, µ́) : ά + µ́ = u}. Therefore we can now
define the corresponding SVM dual optimization problem

maxα,µ−1
2〈Qα,α〉+ α · 1

DSVM : 0 ≤ α ≤ u
α · y = 0
α+ µ = u

(5)

Let

ǴD(α) = −1
2
〈Qα,α〉+ α · 1− δS2(α)

denote the so-called Wolfe dual criterion function. We note that this function is not the true Wolfe
dual, which is defined on (ψ, b, ξ : α, µ) space [17], but it is equivalent to it. We conclude that

GD(α, µ) = ǴD(α)− δS3(α, µ)

and solving for (α∗, µ∗) ∈ arg maxGD is equivalent to solving for α∗ ∈ arg max ǴD and then setting
µ∗ = u− α∗.

The following theorem shows that approximate solutions of (PSVM ) can be constructed from
approximate solutions to its dual (DSVM ) by solving a set of converse dual equations.

Theorem 1 Let (α∗, µ∗) ∈ Oε(DSVM ) and define the set of points

CDσ :=


(ψ, b, ξ) ∈ H × R1+n :

(a) ξi ≥ 0, i = 1, ..., n,
(b) ξi ≥ 1− yi(ψ · zi + b), i = 1, ..., n,
(c)

∑n
i=1 uiξi + 2λψ · ψ̄ − α∗ · 1 ≤ 2σ

(d) ψ = ψ̄ + ψ́

(e) ‖ψ́‖ ≤
√

2σ/λ
(f) ψ̄ = 1

2λ

∑n
i=1 α

∗
i yizi


(6)

that satisfy the σ–converse dual equations (a)–(f). Then CDσ is nonempty for all σ ≥ ε and for
σ ≥ 0 it satisfies CDσ ⊆ O4σ(PSVM ).
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Proof: Our proof is an application of [23, Corollary 2.7] as described in [23, Remark 2.8]. First we
note that the assumptions in [23, Corollary 2.7] are met with ε1 from that corollary equal to zero
since an exact solution to (PSVM ) with nonnegative criterion value always exists and the duality
gap is zero by Theorem 4 in the appendix. Referring to the notation in that paper, we identify the
convex parameter space C = H × R1+n and

f0(ψ, b, ξ) = λ‖ψ‖2 +
n∑
i=1

uiξi

fi(ψ, b, ξ) = 1− yi(ψ · zi + b)− ξi, i = 1, ..., n

fi+n(ψ, b, ξ) = −ξi, i = 1, ..., n

where m = r = 2n. Then the set of points that satisfy the τ–Kuhn–Tucker conditions of Scovel et
al. [23] become

KTCτ =(ψ, b, ξ, α, µ) ∈ C × R2n :

(a) fi(ψ, b, ξ) ≤ 0, i = 1, ..., 2n and α ≥ 0, µ ≥ 0
(b) −τ ≤

∑n
i=1 αifi(ψ, b, ξ) +

∑n
i=1 µifn+i(ψ, b, ξ)

(c) ∃ 0 ≤ σ0 ≤ τ such that
0 ∈ ∂σ0f0(ψ, b, ξ) +

∑n
i=1 αidfi(ψ, b, ξ) +

∑n
i=1 µidfn+i(ψ, b, ξ)


(7)

where df denotes the differential of a function f and ∂τ denotes the τ–subdifferential operator [6].
Let

KTCτ |ε := {(ψ, b, ξ) ∈ C : ∃(α, µ) ∈ Oε(DSVM ) such that (ψ, b, ξ, α, µ) ∈ KTCτ}.

According to [23, Corollary 2.7] the set KTCτ |ε is nonempty for all τ ≥ 2ε and for τ ≥ 0 it satisfies
KTCτ |ε ⊆ O2τ (PSVM ). Thus to complete the proof it is sufficient to show that CDσ ⊆ KTC2σ|ε,
σ ≥ 0.

Let us start by representing (7) at an approximate maximizer (α, µ) = (α∗, µ∗) ∈ Oσ(DSVM ) and
τ = 2σ. Since (α∗, µ∗) ∈ Oσ(DSVM ) it follows that (α∗, µ∗) must be feasible for (DSVM ), that is

0 ≤ µ∗ ≤ u
0 ≤ α∗ ≤ u
α∗ · y = 0

α∗ + µ∗ = u

. (8)

Therefore
n∑
i=1

α∗i fi(ψ, b, ξ) +
n∑
i=1

µ∗i fn+i(ψ, b, ξ) = α∗ · 1−
n∑
i=1

uiξi − ψ ·
n∑
i=1

α∗i yizi

and so with τ = 2σ and ψ̄ = 1
2λ

∑n
i=1 α

∗
i yizi an equivalent set of equations to (7a)-(7c) is

(a) ξi ≥ 0, i = 1, ..., n,
(b) ξi ≥ 1− yi(ψ · zi + b), i = 1, ..., n,
(c)

∑n
i=1 uiξi + 2λψ · ψ̄ − α∗ · 1 ≤ 2σ

(d) 0 ∈ ∂2σ(λ‖ψ‖2)(ψ, b, ξ) + d(
∑n

i=1 uiξi)(ψ, b, ξ) +
∑n

i=1 α
∗
i dfi(ψ, b, ξ)

+
∑n

i=1 µ
∗
i dfn+i(ψ, b, ξ)

. (9)

5



LANL Technical Report: LA–UR–05-7738 2 Constructing an Approximate ...

Thus it remains to show that (9a)-(9d) imply (6a)-(6f). To compute the 2σ subdifferential of the
quadratic function we use Example XI.1.2.2 (p. 95) in Hiriart-Urruty and Lemaréchal [6] to obtain

∂2σ

(
λ‖ψ‖2

)
(ψ, b, ξ) =

2λ

 ψ + ψ́
0
0

 : ‖ψ́‖2 ≤ 2σ/λ

 .

We also have

d

(
n∑
i=1

uiξi

)
(ψ, b, ξ) =

 0
0
u

 ,
dfi(ψ, b, ξ) = −

 yizi
yi
ei

 , i = 1, .., n

and

dfi(ψ, b, ξ) = −

 0
0
ei

 , i = n+ 1, .., 2n

where ei = (0, ..., 1, ..., 0) is an n–tuple with a 1 in position i and 0 in all other positions. Thus we
conclude that the equations (9a)-(9d) imply (6a)-(6f) so the proof is finished.

Theorem 1 says that we can construct a 4ε–minimizer of (PSVM ) from an ε–maximizer of (DSVM )
by employing an algorithm that solves the ε–converse dual equations. We now seek such an algo-
rithm. One approach is to formulate an efficiently solvable programming problem whose solutions
satisfy the ε–converse dual equations. This is relatively straightforward when an exact dual solution
(αT , µT ) is available. For example it is easy to verify that solutions to (3) satisfy the ε–converse
dual equations with ε = 0 and so any algorithm that solves the LP problem in (3) will give an exact
solution to the primal. Furthermore any algorithm that substitutes an exact solution αT into (3)
and then computes an ε–minimizer (b∗, ξ∗) for the LP problem gives an ε–minimizer (ψT , b∗, ξ∗)
to the primal. However when only an approximate dual solution is available it appears to be
more difficult to determine an efficiently solvable programming problem whose solutions satisfy the
ε–converse dual equations. On one hand we can formulate many programming problems whose
(exact) solutions would yield solutions to the ε–converse dual equations. For example any solution
of the QP problem

minψ,b,ξ ‖ψ − ψ̄‖2
ξi ≥ 0, i = 1, ..., n,

ξi ≥ 1− yi(ψ · zi + b), i = 1, ..., n,∑n
i=1 uiξi + 2λψ · ψ̄ − α∗ · 1 ≤ 2σ

ψ̄ = 1
2λ

∑n
i=1 α

∗
i yizi

(10)

satisfies (6). Furthermore with σ = ε a solution is guaranteed. Another QP problem with the same
property is

minψ,b,ξ
∑n

i=1 uiξi + 2λψ · ψ̄
ξi ≥ 0, i = 1, ..., n,

ξi ≥ 1− yi(ψ · zi + b), i = 1, ..., n,
‖ψ − ψ̄‖2 ≤ 2σ/λ

ψ̄ = 1
2λ

∑n
i=1 α

∗
i yizi

. (11)

6
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On the other hand both of these, like the primal problem, may be very large and therefore cannot
be solved directly. This will be true for any programming problem that optimizes over the RKHS,
but it may be difficult to avoid optimizing over this space since the converse dual equations include
a variable that lives in this space. One possibility is to fix this variable, e.g. ψ́ = 0, and then
formulate a programming problem over the remaining variables. For example we might consider
the simpler optimization problem

minψ=ψ̄,b,ξ

∑n
i=1 uiξi

ξi ≥ 0, i = 1, ..., n,
ξi ≥ 1− yi(ψ̄ · zi + b), i = 1, ..., n,

ψ̄ = 1
2λ

∑n
i=1 α

∗
i yizi

. (12)

This is a realization of (3) for approximate dual solutions and is therefore a natural problem to
consider. It is an open question whether solutions to this problem satisfy (6), but we suspect not.
However the following theorem shows that this last problem can be simplified to a one dimensional
convex optimization problem whose approximate solutions are approximately optimal for the primal
but with a larger degree of suboptimality.

Theorem 2 Consider the SVM programming problem (PSVM ) with |zi|2 ≤ K, i = 1, .., n. Suppose
that (α∗, µ∗) ∈ Oε(DSVM ) and GD(α∗, µ∗) ≥ 0. Let

ψ̄ =
1
2λ

n∑
i=1

α∗i yizi (13)

ξ̄i(b) = max (0, 1− yi(ψ̄ · zi + b)), i = 1, .., n (14)

and let (Poffset) be the one dimensional optimization problem

min
b

n∑
i=1

uiξ̄i(b).

If b̄ ∈ Oεo(Poffset) then (ψ̄, b̄, ξ̄(b̄)) ∈ Oεp(PSVM ) with εp = 2εo + 4ε+ 4
√
ε
(√

2 +
√
K/2λ

)
.

Proof: We start by replacing the variables ξi in the converse dual equations with

ξi(ψ, b) := max (0, 1− yi(ψ · zi + b)), i = 1, ..., n,

and then simplifying to obtain a new set of equations described by the following lemma.

Lemma 1 Let (α∗, µ∗) ∈ Oε(DSVM ) and define the set

MDCσ :=

(ψ, b, ξ) ∈ H × R1+n :

(á)
∑n

i=1 uiξi(ψ, b) + 2λψ · ψ̄ − α∗ · 1 ≤ 2σ
(b́) ψ = ψ̄ + ψ́

(ć) ‖ψ́‖ ≤
√

2σ/λ
(d́) ψ̄ = 1

2λ

∑n
i=1 α

∗
i yizi

 (15)

of points that satisfy the σ–modified converse dual equations (á)–(d́). If (ψ, b, ξ) ∈ CDσ then
(ψ, b, ξ(ψ, b)) ∈ CDσ and (ψ, b) ∈MDCσ. Conversely if (ψ, b) ∈MDCσ then (ψ, b, ξ(ψ, b)) ∈ CDσ.

Proof: The proof follows trivially from the monotonicity in ξ of the converse dual equations (6).

7



LANL Technical Report: LA–UR–05-7738 2 Constructing an Approximate ...

Now we choose ψ́ = 0 so that equation (ć) is satisfied for any σ ≥ 0 and we use the fact that α∗

is an ε–maximizer of the dual to determine a value of σ for which equation (á) is satisfied. Since
(α∗, µ∗) is an ε–maximizer it must be feasible. The assumptions give

G(α∗, µ∗) = −1
2
〈Qα∗, α∗〉+ α∗ · 1 ≥ 0.

However since 1
2〈Qα

∗, α∗〉 = λ|ψ̄|2 we obtain

λ|ψ̄|2 − α∗ · 1 ≤ 0

and since α∗ · 1 ≤ 1 (because 0 ≤ αi ≤ ui and u · 1 = 1) we obtain

|ψ̄| ≤
√

1/λ. (16)

We know from Theorem 1 that there exists a (ψ∗, ξ∗, b∗) ∈ CDε and by Lemma 1 (ψ∗, b∗) ∈MDCε.
If we denote

ξ∗i (b) = max (0, 1− yi(ψ∗ · zi + b)), i = 1, ..., n,

then it follows from the identity

|max (0, s)−max (0, t)| ≤ |s− t|,

and the inequality ‖ψ∗ − ψ̄‖ ≤
√

2ε/λ that

|ξ̄i(b∗)− ξ∗i (b∗)| ≤ |(ψ∗ − ψ̄) · zi| ≤
√

2εK/λ, i = 1, ..., n.

In addition it follows that
n∑
i=1

uiξ̄i(b∗) + 2λψ̄ · ψ̄ − α∗ · 1 =
n∑
i=1

uiξ
∗
i (b

∗) + 2λψ∗ · ψ̄ − α∗ · 1 +
n∑
i=1

ui(ξ̄i(b∗)− ξ∗i (b∗)) + 2λ(ψ̄ − ψ∗) · ψ̄

≤ 2ε+
√

2εK/λ+ 2λ‖ψ∗ − ψ̄‖‖ψ̄‖

≤ 2ε+ 2
√
ε
(√

2 +
√
K/2λ

)
.

Therefore with b̄ ∈ Oεo(Poffset) and b̄0 ∈ O0(Poffset) we have

n∑
i=1

uiξ̄i(b̄) + 2λψ̄ · ψ̄ − α∗ · 1 ≤
n∑
i=1

uiξ̄i(b̄0) + εo + 2λψ̄ · ψ̄ − α∗ · 1

≤
n∑
i=1

uiξ̄i(b∗) + εo + 2λψ̄ · ψ̄ − α∗ · 1

≤ εo + 2ε+ 2
√
ε
(√

2 +
√
K/2λ

)
.

Since ξ̄(b̄) = ξ(ψ̄, b̄) we conclude that

n∑
i=1

uiξi(ψ̄, b̄) + 2λψ̄ · ψ̄ − α∗ · 1 ≤ εo + 2ε+ 2
√
ε
(√

2 +
√
K/2λ

)
.

Consequently, (ψ̄, b̄) satisfies the modified converse dual equations with σ = εo
2 + ε +

√
ε
(√

2 +√
K/2λ

)
and by Lemma 1 we know that (ψ̄, b̄, ξ(ψ̄, b̄)) satisfies the converse dual equations. The-

orem 1 now implies the result.
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In the next section we describe a polynomial time algorithm that uses Theorem 2 to compute an
approximate solution to (PSVM ). Since this algorithm computes an exact solution to (Poffset) the
accuracy requirement for the dual solution is given by the following corollary.

Corollary 1 Consider the SVM programming problem (PSVM ) with λ > 0 and |zi|2 ≤ K, i =
1, .., n. To produce an εp–minimizer of (PSVM ) from an εd–maximizer of (DSVM ) using (13)-(14)
and b̄ ∈ O0(Poffset) it is sufficient that

εd =
λε2p(

2
√

2K + 8
√
λ
)2 .

Proof: Theorem 2 implies that given εp it is sufficient to find an εd such that

4εd + 4
√
εd
(√

2 +
√
K/2λ

)
≤ εp. (17)

Since the optimal value of the (PSVM ) criterion GP is ≤ 1 and GP ≥ 0 we need only consider
εp ≤ 1. Substituting εd into (17) and simplifying gives

4εd + 4
√
εd
(√

2 +
√
K/2λ

)
=

4λε2p(
2
√

2K + 8
√
λ
)2 +

(
2
√

2K + 4
√

2λ
)
εp

2
√

2K + 8
√
λ

=

(
2
√
λεp

2
√

2K + 8
√
λ

)2

− (4− 2
√

2)

(
2
√
λεp

2
√

2K + 8
√
λ

)
+ εp

= −

(
2
√
λεp

2
√

2K + 8
√
λ

)(
4− 2

√
2− 2

√
λεp

2
√

2K + 8
√
λ

)
+ εp

≤ εp

where the last step follows from the fact that εp ≤ 1 implies 2
√
λεp

2
√

2K+8
√
λ
≤ 1/4 which in turn implies

that 4− 2
√

2− 2
√
λεp

2
√

2K+8
√
λ
> 0.

Remark 2 The expression for εd in Corollary 1 can often be simplified. For example if the condi-
tions in Corollary 1 are satisfied and λ ≤ 1 then

εd =
λε2p(

2
√

2K + 8
)2

is sufficient, and if K ≥ 1 then

εd =
λε2p

121K

is sufficient.

3 The L1–SVMD Learning Algorithm

In this section we describe an algorithm for the L1–SVM variant of (PSVM ) with ui = 1/n, i =
1, ..., n. This variant is denoted by (PL1−SVM ) and is used to design classifiers for the standard

9
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classification problem. We combine Simon’s rate certifying algorithm for the dual [8, 24, 16] with
a dual–to–primal algorithm based on Theorem 2 to form a polynomial–time learning algorithm
called L1–SVMD. L1–SVMD, shown in Procedure 1, accepts a training set T , a kernel function
k, a regularization parameter λ and an accuracy parameter εp, and produces an εp–minimizer
(ψ̄T , b̄T ) ∈ Oεp(PL1−SVM ). Note that since the dimension of ψ̄T may be large (even infinite) L1–
SVMD does not compute it directly; instead it returns ᾱT which is used to implement the SVM
decision function by way of ψ̄T · Φ(x) = 1

2λ

∑n
i=1 (ᾱT )iyik(xi, x).

The L1–SVMD algorithm has four parts; lines 3–7 determine an exact solution for the degenerate
case where all data samples have the same label, lines 9–12 compute variables that define an instance
of the primal and dual QP problems, lines 14–28 compute an approximate dual solution ᾱT , and
line 31 computes the offset b̄T . The approximate dual solution ᾱT is determined by a rate certifying
decomposition algorithm that employs working sets W of size 2 determined by Simon’s algorithm
[24]. Lines 19–20 of this algorithm compute the value ḿ which is used to determine the maximum
number of iterations performed by the main loop in lines 22-27. The main loop updates α by
solving the Wolfe Dual (D́L1−SVM ) restricted to the two components specified by the working set,
updates the gradient g, uses Simon’s algorithm to determine the next working set, and terminates
after no more than dḿe iterations where dḿe is the smallest integer greater than or equal to ḿ.
The condition Wm = ∅ indicates that an exact solution has been found and if this occurs for
m < dḿe then the algorithm terminates early. The value ḿ is determined by computing the
accuracy 0 < εd ≤ 1 (on line 19) according to Remark 2 and then computing ḿ (on line 20) to
guarantee an εd–maximizer for the dual. The expression on line 20 is determined by applying
Theorem 3 in Hush et al. [8] with S = maxi ui = 1/n, L = K/2λ where K ≥ maxi k(xi, xi),
R∗ − R(α0) ≤ 1 where R = ǴD is the Wolfe Dual criterion, and τ = 1/n to obtain the following
corollary.

Corollary 2 For 0 < εd < 1 and K ≥ maxi k(xi, xi) the main loop of Simon’s rate certifying
algorithm illustrated in lines 22–27 of Procedure 1 produces an εd–maximizer of (D́SVM ) after dḿe
iterations where

ḿ =


2n ln 1

εd
, εd ≥ 2K

λn

2n
(

2K
λεdn
− 1 + max

(
0, ln λn

2K

))
, εd <

2K
λn

.

Applying this corollary with K = Kn := maxi k(xi, xi) gives the expression for ḿ on line 20.
Once ᾱT has been determined line 31 determines b̄T by computing an exact solution to the one
dimensional convex optimization problem specified in Theorem 2. To see this recall that Theorem
2 gives

b̄T ∈ arg min
b

n∑
i=1

ui max
(
0, 1− yi(ψ̄T · zi + b)

)
.

It is easy to show that this is equivalent to line 31 by noting that

gi = 1− yiψ̄T · zi, i = 1, ..., n

where gi is the ith component of the gradient g = −QᾱT + 1.
Since the number of iterations dḿe depends on the random variable Kn = maxi k(xi, xi) the run

time of L1–SVMD is a random variable. To establish a deterministic run time bound for L1–SVMD

10
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we define

K̄ := sup
x∈X

k(x, x)

and restrict to kernels where K̄ is finite. This includes the Gaussian RBF kernel k(x, x′) =
e−σ

2‖x−x′‖2 for which K̄ = 1. The following is a technical lemma that is needed to establish a
deterministic run time bound for L1–SVMD in terms of K̄.

Lemma 2 For 0 ≤ έ ≤ 1 let M(Ḱ, έ) = dḿ(Ḱ, έ)e where ḿ is the function specified in Corollary
2 with variable (K, εd) = (Ḱ, έ). If K1 ≤ K2 and ε1 ≥ ε2 then M(K1, ε1) ≤M(K2, ε2).

Proof: It is easy to verify that the function ḿ is monotonically decreasing in έ and therefore
ḿ(K1, ε1) ≤ ḿ(K1, ε2). It is also easy to verify that ḿ is continuous and piecewise differentiable
in Ḱ. Therefore to establish that ḿ is monotonically increasing in Ḱ it is sufficient to show that
∂ḿ
∂Ḱ
≥ 0 over each of the three intervals where it is differentiable. The partial derivatives over these

intervals are given by

∂ḿ

∂K
=


0, K < εdλn

2

2n
(

2
λnεd
− 1

K

)
, εdλn

2 < K < λn
2

4
λεd
, λn

2 < K

.

Clearly ∂ḿ
∂Ḱ

is nonnegative over all three intervals. Thus we conclude that ḿ is monotonically

increasing in Ḱ and therefore ḿ(K1, ε2) ≤ ḿ(K2, ε2). Combining the two steps gives ḿ(K1, ε1) ≤
ḿ(K2, ε2) and since d·e is nondecreasing the proof is finished.

With the help of the above lemma we can apply Corollaries 1 and 2 with K = K̄ to obtain
a deterministic bound on the number of iterations in the main loop of Simon’s decomposition
algorithm. This allows us to establish the following polynomial bound on the run time of L1–
SVMD.

Theorem 3 Consider the L1–SVMD algorithm with a fixed kernel k : X × X → R where K̄ =
supx∈X k(x, x) is finite and K̄ ≥ 1. Furthermore let τk be an upper bound on the computation
required to evaluate k. Then the L1–SVMD algorithm with inputs T = ((x1, y1), . . . , (xn, yn)) ∈
(X × Y )n, 0 < λ ≤ 1, and 0 < εp ≤ 1 produces an εp–minimizer (ψ̄T , b̄T ) ∈ Oεp(PL1−SVM ) with
run time

O
(
τkn

2 + n2 ln 1
λε2p

)
, εp ≥ 11

√
2K̄λ−1n−1/2

O
(
τkn

2 + λ−2n
ε2p

+ n2 max (0, lnλn)
)
, εp < 11

√
2K̄λ−1n−1/2

.

Proof: The L1–SVMD algorithm sets α0 = 0 (on line 15) giving an initial dual criterion value
of 0 thereby guaranteeing that the final dual criterion value is nonnegative. Thus the L1–SVMD
algorithm is guaranteed to produce an εp–minimizer of (PL1−SVM ) since it computes εd according
to Remark 2, computes an εd–maximizer of the dual whose dual criterion value is nonnegative
thereby satisfying the assumptions of Theorem 2, and performs the dual–to–primal map prescribed
in Theorem 2. To determine the run time we start by observing that the computation in lines 3–21
is dominated by the O(τkn2) computation required to produce the Q matrix. The computation
of the main loop in lines 22–27 is dm̄eL where dm̄e is the number of iterations and L is the

11
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computation per iteration. The computation per iteration satisfies L = O(n) since solving the
2–variable QP problem on line 24 takes constant time, updating the gradient on line 25 requires
O(n) computation (due to the sparsity of αm − αm−1), and since Simon has provided an O(n)
algorithm for the computation on line 26 [24]. To obtain a bound on the number of iterations let

ε̄d = λε2p
121K̄

be the accuracy obtained by applying Remark 2 with K = K̄. Note that this accuracy
is less than or equal to the accuracy value used to determine ḿ in the L1–SVMD algorithm. Now
apply Corollary 2 with εd = ε̄d and K = K̄ to obtain a number of iterations m̄. Then Lemma 2
gives m̄ > ḿ. Substituting ε̄d into the expression for m̄ from Corollary 2 and simplifying gives

dm̄eL =


O
(
n2 ln 1

λε2p

)
, εp ≥ 11

√
2K̄λ−1n−1/2

O
(
λ−2n
ε2p

+ n2 max (0, lnλn)
)
, εp < 11

√
2K̄λ−1n−1/2

.

Next we prove that the computation of the main loop dominates the computation of the offset in
line 31 thereby finishing the proof.

To compute the offset we must minimize the criterion
∑n

i=1 ui max
(
0, yi

(
gi − b

))
over b. This

criterion is the sum of hinge functions with slopes −uiyi and b–intercepts gi. It is easy to verify
that if the ui are nonnegative, the gi are bounded, and the yi are not all equal then the set of optimal
solutions is bounded. Furthermore, it is easy to verify that the finite set {gi, i = 1, ..., n} contains
an optimal solution b̄T . The run time of the algorithm that performs a brute force computation of
the criterion for every member in this set is O(n2). However this can be reduced to O(n log n) by
first sorting the values gi and then visiting them in order, using constant time operations to update
the criterion value at each step. Thus, the computation required for line 31 is O(n log n) which is
dominated by the computation in the main loop.

Remark 3 In practice the run time of the L1–SVMD algorithm can often be improved by extending
Simon’s algorithm and employing a different stopping rule. For example, Hush et al. [8] introduce
an extension to Simon’s algorithm that possesses the same run time bounds but is shown empiri-
cally to provide substantially improved convergence rates. In addition they introduce an adaptive
stopping rule that guarantees the same accuracy but is shown empirically to stop the algorithm
in far fewer than dḿe iterations.

4 Appendix

A proof that the duality gap is zero for the finite dimensional L1–SVM primal–dual pair can be
found in [5]. The following theorem extends that result to the (possibly) infinite dimensional
primal–dual pair in (1)–(2).

Theorem 4 Consider the Lagrangian

L(ψ, ξ, b;α, β) =
1
2
‖ψ‖2H + u · ξ +

n∑
i=1

αi

(
1− ξi − yi(zi · ψ + b)

)
−

n∑
i=1

βiξi

of (1) defined for (ψ, ξ, b) ∈ B := H × Rn × R and (α, β) ∈ E2n := {α, β : α ≥ 0, β ≥ 0}. Then
we have

inf
(ψ,ξ,b)∈B

sup
(α,β)∈E2n

L(ψ, ξ, b;α, β) = sup
(α,β)∈E2n

inf
(ψ,ξ,b)∈B

L(ψ, ξ, b;α, β).
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Proof: Consider (ψ0, ξ0, b0) := (0, 2, 0) where we use the notation 2 ∈ Rn for the vector
(2, 2, ..., 2, 2). Then since L(ψ0, ξ0, b0;α, β) = 2 · u − α · 1 − β · 2 it follows that for any value
a that the set

{(α, β) ∈ E2n : L(ψ0, ξ0, b0;α, β) ≥ a} = {(α, β) ∈ E2n : α · 1 + β · 2 ≤ 2 · u− a}

is compact. Consequently, we can apply [2, Theorem 3.7] to obtain the assertion.
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Procedure 1 The L1–SVMD Algorithm.
1: INPUTS: training set T , kernel k, regularization parameter λ, and accuracy parameter εp
2:

3: Compute an exact solution for degenerate case
4: if (all yi take the same value ý) then
5: ᾱT ← 0, b̄T ← ý
6: Return(ᾱT , b̄T )
7: end if
8:

9: Compute QP variables for the L1–SVM
10: ui = 1/n, i = 1, ..., n
11: Kn ← maxi k(xi, xi)
12: Qij ← yiyjk(xi, xj)/2λ, i, j = 1, ..., n
13:

14: Compute an initial feasible point α0, corresponding gradient g0, and initial working set W 0

15: α0 ← 0, g0 ← 1
16: W 0 ← {i1, i2} where yi1 = 1, yi2 = −1
17:

18: Compute an εd–maximizer of the dual QP
19: εd ← min

(
1, λε2p

121Kn

)
20: ḿ←


2n ln 1

εd
, εd ≥ 2Kn

λn

2n
(

2Kn
λεdn
− 1 + max

(
0, ln λn

2Kn

))
, εd <

2Kn
λn

21: m← 0
22: repeat
23: m← m+ 1
24: αm ← solve the 2–variable QP determined by αm−1 and Wm−1

25: gm ← gm−1 −Q(αm − αm−1)
26: Wm ← use αm and gm to compute next working set using Simon’s algorithm
27: until

(
(Wm = ∅) or (m = dḿe)

)
28: ᾱT ← αm

29:

30: Compute the offset
31: b̄T ← arg minb

(∑n
i=1 ui max(0, gmi − yib)

)
32:

33: Return(ᾱT , b̄T )
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